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Public Executive Summary

This document presents the development and performances of the different
modules related to non-verbal communication, their implementation within the
SERMAS Toolkit, how they communicate with other modules, as well as some

final ethical implications and privacy concerns.

The initial explanation starts from the non-verbal perception capabilities of the
system and from the intention to interact detector.

This module can compute the future interaction probability of people (and potential
SERMAS toolkit users) who are in front of an RGBD camera. This is achieved by
using Machine Learning methods which take in input body motion information and
facial features (such as the user gaze) and outputs the predicted probability that
a specific user mustinteract in the future with the system on which the camera is
mounted.

Some important aspects regard the data collection done for the algorithms
training, architecture selection and performance evaluations.

One of the main performance points is the operating range. The module has been
shown to retain good performances even at distances up to 5 m from the sensor.
Indeed, this solution was designed for long range applications to provide

meaningful proactive interactions with acceptable advance time.

The document then covers some research done on the non-verbal communication
capabilities of a robotic platform. Following the intention to interact detector, we
devised a reaction strategy to provide nice human-robot interactions with people,
in this case offering a chocolate treat to people passing in the proximity of the

system.

The software architecture behind these solutions is carefully described, detailing
both the specific parts of the pipeline, how they communicate with each other, and
the integration activities planned to use these packages as part of the SERMAS
Toolkit.
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Lastly, some ethical considerations are made regarding users' privacy during both
the data gathering phase and system deployment.
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Introduction

This deliverable aims to present the development done in the context of non-verbal
communication between a potential user and the specific physical embodiment
which makes use of the SERMAS Toolkit.
Nonverbal communication is a fundamental component of HRI for humans and
robots [3], [4]. More specifically, we focus on the user’s intention recognition and
the reaction to the perceived user intentions.
The developments described in this deliverable are also reported in two conference
paper
- “Predicting the Intention to Interact with a Service Robot: the Role of Gaze
Cues”, IEEE Int. Conference on Robotics and Automation 2024 [12]
- “A long-range mutual gaze detector for HRI,” in ACM/IEEE Int. Conf. on
Human-Robot Interaction, 2024 [2]
The overall situation can be described as in the block diagram in Fig. 1. The
nonverbal communication between the user and the agent happens through two
main channels: actuation and perception. Forexample, the agent can perceive the
user’s intention to interact, and actuate a proactive behavior in order to realize a
successful interaction. Possibly, useful information exchanged in nonverbal
communication can be shared externally, e.g. to be used in the dialogue system.

For more details about this scheme, one could refer to D4.1.
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Fig. 1. High level system architecture and modules communication.



Perception capabilities

Different perception modules have been designed and combined to create a user
data detection pipeline which can provide at the end information of different type
such as user detection, body tracking, facial landmarks tracking and user intention
recognition. These activities implied both the use of off-the-shelf algorithms, and
the development of customized frameworks. The user detection and tracking are
assumed to come from the chosen sensor software development kit and therefore
will not be discussed in depth in this document. Examples of such sensors which
offer a similar functionality are the Microsoft Azure Kinect DK and the Stereolabs
ZED 2.

Indeed, the extraction of useful information about the users’ behavior is not an
easy task in HRI, especially when dealing with nonverbal communication [5]. A
body of work aims at estimating the human intention, e.g. in the context of
navigation [6], collaborative tasks [7], [8], or for social behavior interpretation
[9]-[11].

Intention to interact classification

For a social entity, it is crucial to perceive people's intentions as early as possible,
for example that an approaching person intends to interact. In such case, it can
proactively enact friendly behaviors that lead to an improved user experience.
Consider a robot stationery service in a public space, awaiting a possible user
assistance request. The robot is assumed to be equipped with exteroceptive
sensing capabilities, e.g. provided by an RGB-D sensor. The representative frame
of the robot is chosen at its camera sensor frame and is denoted with Fs. People
freely move in the environment, i.e., they can randomly enter or exit the scene,
and possibly interact with the robot. The information about a person’s behavior is
described by properly chosen body frames and facial landmarks. The body frames
of interest are one located in the middle of the person’s chest (denoted with Fc)
andon the person’s head (Fh). We assume that such metric information, indicative
of the proxemics of the subject, is measurable by the robot sensor. Furthermore,
we also assume that the camera RGB images allow the detection of facial

landmarks, which mainly consist of the projected locations, on the image plane, of



specific points of interest on the person’s face. Multiple facial landmarks are
detected at once with each landmark containing the 2D point coordinates on the
image with an additional component corresponding to the depth of the landmark
w.r.t. the face centerof gravity. A scheme of the user data perception pipeline can
be seen in Fig. 2.

Il MediaPipe

\;"— RGB@4K+BT
R

Fig. 2. System architecture of the user data perception pipeline. BT stands for Body Tracking, FL for Face

BT+FL

Landmarks.

The facial landmarks, together with the body information of the subject’s chest
and head, are fed to a pre-trained mutual gaze classifier that outputs a score
representing the probability that the subject is looking at the camera. Finally, the
subject’s intention to interactis indicated with y. The pipeline scheme can be seen
in Fig. 3: our system is a classifier that, given the information about a potential
user, provides an estimate y of its probability of interaction with the robot. The
approach relies on (i) existing modules providing information on people motion
(the sensor software development kit), and (ii) another specifically designed

classifier, which computes the mutual gaze. Multiple users are supported.

-4| TRACKED USER #2

TRACKED USER #1

Pn INTENTION
CLASSIFIER 1

PERCEPTION
SYSTEM i

\m

MUTUAL
GAZE
CLASSIFIER

Fig. 3. Interaction intention detection pipeline architecture.



We expect that the motion dynamics of body frames, facial landmarks, and the
temporal evolution of the mutual gaze are important cues to predict whether a
given person intends to interact with the robot. To capture these dynamics, we
use a recurrent Long Short-Term Memory (LSTM [1]) neural network as a stateful
sequence-to-sequence classifier. We use the implementation available in the
PyTorch5 library. To offer a more complete analysis, we compare the LSTM
performance against a simpler, stateless model, i.e. a Random Forest (RF)
classifier implemented using the scikit-learn package.

All the models are evaluated using a 5-fold stratified cross-validation strategy;
folds are computed by splitting the set of sequences in training and testing sets,
such that all frames for a given sequence stay in the same set.

In our setup, some feature sets include mutual gaze information through the
variable “m”. Such information is extracted using a public mutual gaze detector

implementation, see [2]. We first evaluate the algorithm performances frame-by-



frame using the AUROC metric, comparing the two different model architectures
(RF and LSTM).
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Fig. 4. AUROC of RF and LSTM classifiers with the different feature sets.

The plot in Fig. 4 shows that the stateful LSTM classifiers consistently outperform
the simpler stateless RF counterparts, with the different test input sets.
Therefore, any further analysis is restricted to the LSTM architecture with two
different input features:
e CH, which contains only information about the 3D position and orientation
of the user’s chest and head;
« FULL, which contains all the information available in the CH input features

plus the user’s facial landmarks and mutual gaze information.
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Fig. 5 AUROC for the LSTM using fCH (left) and fFULL (right) for different human-robot distance quantiles.

Fig. 5 reports an experiment in which we split the testing data into 5 distance
quintiles and evaluate the classifier separately on each. All reported AUROC values
are significantly greater than 0.5, which indicates that, even among subjects that
are at approximately the same distance from the robot, the classifier is effective
at differentiating those who are likely to interactand those who are not; i.e., even
though subject distance from the robot is a powerful feature, it is not the only
aspect that is considered by the models. The figure further shows that the
improvement of the performance introduced by the contribution of the gaze is
uniform across the whole range of subject-robot distances. In the bin of the closest
distance (the one from 0.48 to 2.10 m), the gain in performance due to the
additional gaze information and facial landmarks is about 5%. This improvement
increases to 9% for the intermediate bin (containing distances from 3.08 to 3.83
m), and to 7% for the farthest distances (above 4.68 m).
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Fig. 6. Median distance to the robot (left) and median predicted probability of interaction (center) as a function

of time. Time t = 0 is defined for each sequence as the moment when the subject either interacts, for positive



sequences (dashed line), or the moment in which the subject is closest to the robot, for negative sequences
(continuous line). The rightmost plot reports the predicted probability of interaction as a function of distance to
the camera, ignoring negative samples with t > 0. Shaded areas represent the interquartile range.

Fig. 6 shows the statistics from positive and negative sequences for the whole
dataset. In the left and center plots, all sequences are temporally aligned in such
a way thatt = 0 denotes the time of interaction, in the case of positive sequences,
and the timein which the subject is at the closest distance from the robot, in case
of negative sequences. We observe from the left plot that negative sequences
reach, on average, a distance from the robot of 1.6 m before moving further. The
center plot shows that at t = 0 (vertical dotted line), the model yields very shamp
predictions. The distribution of the output probabilities for positive and negative
sequences starts diverging at t = —4 s, and clearly separate at t = =3 s. The
rightmost plot reports the same data but with distance to the robot on the
horizontal axis. Negative sequences that reach distances below 1 m are few, so
the rightmost data is noisy.

We now report the performance of our models when evaluatingthem at the level
of entire sequences. For each sequence, we simulate that the model is applied to
each frame, and when exceeding a threshold T, the robot takes an irreversible
decision to enact a given behavior (e.g. facing, approaching or greeting the user).
Negative sequences in which the output probability never exceeds T are true
negatives (i.e., the robot correctly ignored a non-interacting subject); positive
sequences in which the output probability exceeds T for at least a single frame are
true positives; only for true positives, from the earliest frame whose classifier
output exceeds T , we compute the advance detection time (i.e. the amount of
anticipation) and advance detection distance (i.e. the distance of the user when
the robot reacted). False negatives denote sequences for which the robot did not
react to an interacting user; false positives denote sequences in which the robot

incorrectly reacted to a non-interacting subject. Given these definitions, we



compute sequence-level metrics: False Positive Rate (FPR), True Positive Rate
(TPR), precision, recall and accuracy.
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Fig. 7. Sequence-level performance metrics for the LSTM approach with (blue) and without (orange) gaze and
face landmark features. Left: ROC curve. Center: Precision and Recall as a function of threshold T. Right: Mean
Advance Detection Distance (vertical axis) vs. achieved accuracy (horizontal axis) for different values of 7. The
orange circles denote a threshold value of T = 0.87 for the baseline model set to achieve maximum accuracy.

Conversely, the blue triangles denote a threshold value of T= 0.73 needed by our model to display the same
level of accuracy.

Fig. 7 reports these metrics for both the baseline model (which uses fCH), in
orange, and our model (that relies on the more complete information containedin
fFULL), in blue. We observe that the latter outperforms the former in all metrics,
regardless of the threshold value T. In particular, the center plot highlights that
high threshold values are key to obtaining very high precision and recall
performance, with our model consistently outperforming the baseline in both
metrics. Nevertheless, the plot does not show the complete picture: high threshold
values yield high performance because, in this case, the model does not commit
to a decision until very late in the sequence, when most positive sequences yield
very high probabilities; this behavioris not useful in practice. The right plot in Fig.
7 studies the trade-off between sequence classification accuracy, on the horizontal
axis, and mean advance detection distance, on the vertical axis, controlled by T.
Low values of T yield early, distant but inaccurate detections (top left). Increasing
T decreases the mean Advance Detection Distance but improves accuracy up to a
maximum value; further increases of T lead to a marked increase in false
negatives, and negatively impact both Advance Detection Distance and Accuracy,
as can be also seen from the drops in the recall value. The orange dots denote a

threshold (1 = 0.87) yielding maximum accuracy (95.2%) for the baseline



classifier, and the blue triangles denote the threshold (T = 0.73) needed to get to
the same accuracy for our model. At this threshold, our model yields a significantly
better advance detection distance (3.27 m) w.r.t. the baseline (2.42 m): an

improvement of 0.85 m.

Actuation capabilities

As of now, the reaction to perceived user intentions is purely based on the non-
verbal intention detection described in the previous section. Further integration
and development will investigate the possibility of integrating also verbal

information.

Reaction to user intentions

Following the user interaction intention detection, the robot can react to this
perceived need to offer a more custom and acceptable interaction.
An example of such interaction could be offering chocolate treats to people passing

by if they are perceived as willing to interact.

Fig. 8. Interaction setup.

In this application, portrayed in Fig. 8, the robot stays still on the table in a resting

position, with the arm aligned with the sensor’s forward direction, the am
retracted, and LEDs turned off. Upon triggering, an offering motion can be initiated
and consistsin the robot turning on the spot toward the selected person, lighting

up its LEDs to signal its activation, and reaching out with the arm.
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Fig. 9. Updated version of the waiter robot. On the left the rest position, on the right the offering position with

the tray open and chocolate treats visible.

The evolution of this setup can be seenin Fig. 9. This updated version has a better

offering setup with a custom tray with a lid that opens when the robot extends the
arm.

This setup will be used in future experiments to validate the user perception

module in real-world scenarios as well as quantify the impact of a proactive agent
behavior on people.

Command and sensing signals

The textual dialogue module developed in WP5 takes non-verbal signals as textual
descriptive input prepended by a special token indicating the type of non-verbal
input. An example of the non-verbal input from the user emotion recognition
module could be demonstrated as follows: <emotion> happy. The non-verbal
communication signals considered in the dialogue module includes user emotions

and gestures, robot actions in response to users (see D5.1 for details).
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Software release

Perception modules

In the next section, there will be an explanation of the different nodes which are

integral parts of the perception modules.

User Data Perception Pipeline

A representation of the user perception pipeline can be seen in Fig. 10 with a more

high-level conceptual map available in Fig. 2.

GRAVITY
ALIGNMENT
RGB Robot
Sensor
Frame
Frame IMU
Body Frames
AZURE FAcE Users’ Data
KiNECT RGB Image LANDMARK
DRIVER TRACKING

Fig. 10 User data perception pipeline nodes architecture.

1.1.1.1. Azure Kinect ROS Driver

This node runs the driver of the RGB-D sensor and the body tracking offered by its
SDK. It publishes the following information: (i) the raw signals of the Kinect's
onboard Inertial measurement unit (IMU); (ii) the RGB image streams; (iii) the
body frames from the sensor SDK; and (iv) the RGB camera frame. The frame

information is standardized in ROS2 as tf messages.

1.1.1.2, Gravity Alignment

This node calculates the gravity-aligned robot frame. It takes the IMU data to
calculate the difference of the RGB sensor frame orientation w.r.t. the inertial
vertical direction and broadcasts the aligned robot frame. Ultimately, the robot
frame is defined as the one centered in the origin of the RGB sensor frame
constrained vertically to be aligned with gravity and horizontally with the camera
heading.

11



1.1.1.3. Face Landmarks Tracking

This node is the core of the perception pipeline and implements the face landmarks
extraction. It takes as input the user’s body and robot frames information and the
current RGB image. Firstly, it performs projection of the users’ 3D head positions
onto related 2D points on the image plane. This information is used to crop the
regions of interest of the RGB image corresponding to the faces of the detected
users. Such cropped images are fed to multiple instances of the MediaPipe Face
Mesher, which detects the face landmarks for each user. This crucial step allows
us to overcome the distance range limits of the MediaPipe implementation.
Exploiting the robust detection of the head frames provided by the Azure Kinect
SDK, we can allow the face landmarks detection by MediaPipe at distances further
than 2 m. To be independent of the camera orientation, the body frame poses,
originally expressed in the RGB sensor frame, are transformed into the gravity-
aligned robot frame. The detected face landmarks and the transformed body frame
poses of the detected users are finally time synchronized and published as a

custom ROS2 topic. Such message is called Users’ Data in the scheme of Fig. 10.

Mutual Gaze Classifier

This node is taken as from the public implementation available online here:
https://github.com/idsia-robotics/mutual_gaze_detector/tree/hri
This node takes the users’ data message in input and outputs the probability of

mutual gaze for each person currently tracked by the camera.

Interaction Intention Classifier

This node is a ROS2 wrapper for the actual Pytorch implementation of our
classifier. It takes as input the user data custom topic provided by the Face
Landmark Tracking node. As output, it publishes a simple custom topic that
contains the IDs of the detected users and the corresponding probability of
interaction as computed by the classifier. This node can also run a GUI showing
the real-time evolution of the predicted probability related to the user who has
been tracked for the longest time, for visualization purposes.

12



Integration activities

All the perception modules and different nodes explained above can be run within
a Docker container for easy and quick deployment on multiple platforms.
Afterwards, the integration of the perception modules concerns the capability to
exchange data between the ROS2 environment and the SERMAS toolkit, following
the API specification as reported in D6.2. To achieve this, a ROS2 proxy node has
been developed as a reusable tool for connecting ROS2-based systems to the
SERMAS toolkit.
It allows the communication between ROS2 nodes and the SERMAS toolkit by
converting and forwarding the data exchanged between the two entities.
More specifically, the proxy node implements an HTTP client and a MQTT client
that automatically connect and establish a secure communication with the SERMAS
toolkit by authenticating using a client ID and secret credentials, which allow the
node to publish and/or subscribe to the topics associated to a SERMAS application.
For each topic the communication happens in two possible directions, the proxy:
1. subscribes to the ROS topic, convert the payload and publish the data to
the SERMAS topic
2. subscribes to the SERMAS topic, convert the payload and publish the data
to the ROS topic
The proxy node is built within a Docker container and started alongside the
perception container(s) with Docker Compose.
Please refer to D6.1 for more details about human-agent interaction and how the

modules developed in WP4 are integrated in the agent architecture.
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Ethical implications and privacy aspects

The ethical and privacy concerns should be evaluatedin the two different phases:
training and deployment.

During the first phase, there has been a procedure to gather and save data to be
used for the training of the artificial intelligence components. All the participants
in the training data acquisition have therefore signed a consent form (or their
tutors), with all gathered data kept for private use only. The experiments were
also approved beforehand by the local institution’s ethical committee.

The people who participated in the data gathering come from several users which
include adults and also a group of kids.

Nonetheless the data saved are in the form of anonymized body joint information
and anonymized facial landmarks on which the models are trained.

In the deployment phase, the different components are used “asis” with no online
changes. Therefore, even though user-specific private data (such as body joint
tracking or facial landmarks) is extracted from the user, it is not saved nor shared

with anyone.

14



Conclusion

We have presented the results of our non-verbal communication module. Firstly,
in the perception field, understanding when someone wants to interact with the
system, and in a successive stage in the robot movements field, devising some
task dependent robot reactions triggered the perceived user need.

The modules have been developed to allow long-range operation and therefore the
most advanced time possible. Having a higher advance time for the detection of a
user in need is crucial. This allows early reaction from the system useful in
providing targeted and possibly more socially acceptable interactions.

In the next stage, the developed modules will be tested and validated in the wild
studying how different reactions or triggering threshold might affect human

behaviors towards an autonomous system.
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